

Enabling the First Active Radar in a CubeSat with Gamechanging Antenna Technology: Raincube

Nacer Chahat

Mechanical Engineers: Jonathan Sauder and Mark Thomson

SPACE TECH EXPO USA – PASADENA CA

Pre-Decisional Information – For Planning and Discussion Purposes Only

RainCube: Radar in a CubeSat

- 0.5-m reflector Ka-band antenna
- Polarization: V-polarization
- Gain: 42.6 dBi
- Efficiency: 56%
- HPBW: 0.57° → footprint = 8.0km
- Key RF innovation:
 - Compensation of the non parabolic shape
 - Telescoping waveguide
 - 40 opening per inch (OPI) mesh reflector
 - Capability of modeling accurately the Ka-band antenna including the shape distortion and OPI

RainCube: Radar in a CubeSat

0.5m mesh reflector

• **Gain**: 46dBi

• Efficiency: 56%

Telescoping waveguide

> Multiflare horn

Multiflare horn

Telescoping waveguide

Rect.-to-Circ. waveguide transition

N. Chahat, et al., "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

RainCube: Radar in a CubeSat

• Antenna description:

	Directivity (dBi)		Gain (dBi)		Loss (dB)*		Peak SLL (dB)	
	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.
Solid	43.6	43.55	43.3	43.24	0.3	0.31	-17.45	-17.75
Mesh	-	43.28	42.61	42.48	-	0.8	-16.8	-18.33

N. Chahat, et al., "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

RainCube: Access to Space

- Launched on May 20th 2018
- Soft Cargo on ISS resupply
- Deployed from ISS via NanoRacks in July
- Antenna deployed 4 weeks into commissioning

Credit: NASA/ Mark Mackley, VAFB

RAINCUBE: Deployment in Space

RAINCUBE: Deployment in Space

RainCube: Science Collected

RainCube: Collaborative Measurement

RainCube and TEMPEST-D observed Trami 5 minutes apart

Image Credit: S. Brown/RainCube and TEMPEST-D teams

JPL Antenna Technologies in IEEE

N. Chahat, "A mighty antenna from a tiny CubeSat grows," *IEEE Spectrum*, vol. 55, no. 2, pp. 32-37, Jan. 2018.

N. Chahat *et al.*, "Deep Space Network Telecommunication CubeSat Antenna: Using the deployable Ka-band mesh reflector antenna," IEEE Antenna Propag. Magazine, vol. 4, April 2016.

N. Chahat *et al.*, A Review of CubeSat Antennas: From Low Earth Orbit to Deep Space, accepted to *IEEE Antennas and Propagation Magazine*.

Book to be published in JPL Descanso Book Series – Wiley IEEE.

N. Chahat, "CubeSat antennas for Earth Science and interplanetary missions

Antennas for CubeSats

X-band LGA

All-metal Tx/Rx HGA

Ka-band all-metal metasurface

MarCO HGA

X/Ka 1m-mesh reflector

Ka-band 1m reflectarray

N. Chahat et al., A Review of CubeSat Antennas: From Low Earth Orbit to Deep Space, accepted to IEEE Antennas and Propagation Magazine.

Enabling the First Active Radar in a CubeSat with Gamechanging Antenna Technology: Raincube

Nacer Chahat

Mechanical Engineers: Jonathan Sauder and Mark Thomson

SPACE TECH EXPO USA – PASADENA CA

Pre-Decisional Information – For Planning and Discussion Purposes Only